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You got those axioms you wanted! But what do they mean?

Well, like I said, they don’t really mean anything other than 

what they state.  Axiomatically, probability is just a function 

P(x), where ℬ (all open sets in Ω) is the domain (possible inputs 

to the function) and [0,1] is the range (possible outputs of  the 

function).

This probability function is defined by three axioms, or rules:
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1. P(𝐴) ≥ 0 for all 𝐴 ∈ ℬ
Simple enough, this just means the probability of  an event can’t be negative.

2. P(Ω) = 1
The probability of  the sample space is 1.  Pretty intuitive, since the sample space contains 

all possible outcomes of  an experiment

3. If  sets 𝐴1, 𝐴2, 𝐴3, … ∈ ℬ are pairwise disjoint, then P(ڂ𝑖=1
∞ 𝐴𝑖) = 

σ𝑖=1
∞ 𝑃(𝐴𝑖)

A little more complicated but it just means that if  events don’t overlap at all, then the 

probability of  the combined (union) events is the sum of  the probabilities of  the 

individual events.
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Maybe at first glance, but we can do some pretty crazy things with 

these.  Lets bring back our friends the coins from the first section on set 

theory:

Ω = {     ,    }H T

Now, outside the axioms, we could say, intuitively, and assuming a fair 

coin, the probabilities of  flipping heads and tails are equal:

P(  ) = P(  )H T
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But we also know that heads and tails are disjoint (intersection is ∅), and they partition Ω (union is Ω in 

addition to being disjoint):

So by axiom 2 (because they partition the sample space):

P(   ∪ ) =P(Ω) = 1H T

Ω = H T∪ ∅ = H T∩

And by axiom 3 (because they are disjoint):

P(   ∪ ) =P(   ) + P(   ) H T H T

5



Presentation 1-2-2:  The Axioms, Explained

Lets put this together:

P(   ∪ ) =P(   ) + P(   ) =P(Ω) = 1 

⇒P(   ) + P(   ) = 1

H T H T

H T

P(  ) = P(  )H T

But earlier we posited outside the axioms:
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So we can substitute tails with a second heads:

P(   ) + P(   ) = P(   ) + P(   ) = 1

⇒ 2P(   ) = 1

⇒ P(   ) =
1

2
= 0.5

H T H H

H

H

That was a lot of  work to calculate a 50-50 chance of  landing heads-up! But remember, that equality of  

probability was based on our own assumption of  a fair coin.  An unfair coin could have a probability of  

landing heads-up equal to, say, 0.2.
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Nah, we can derive a definition of  probability that doesn’t have us referencing the axioms all the time, which 

is great because experiments get a lot more complicated than a coin toss!
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So let’s make some assumptions and then calculate the probability of  some event A:

1. Ω = {𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛} is finite

2. Our old friend ℬ is any collection of  subsets of  Ω.

3. We’ve got some nonnegative numbers 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑛 that sum to 1.

𝑃 𝐴 = ෍

{𝑖:𝜔𝑖∈𝐴}

𝑝𝑖

This bottom part looks tricky, but its pretty simple.  The sum only includes values of  𝑝𝑖 for which 𝜔𝑖, which 

we know is part of  the sample space and thus a possible outcome, is an element in A.
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Anything for you, buddy.  Lets assume set 𝐴1= 𝜔1, 𝜔2
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𝑃(𝐴1) = σ{𝑖:𝜔𝑖∈𝐴1}𝑝𝑖 = 𝑝1+ 𝑝2
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The point is that this compact little function satisfies the axioms of  probability, and now, brace yourself, 

because we’re gonna prove it!
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Axiom 1. P(𝐴) ≥ 0 for all 𝐴 ∈ ℬ.  All 𝑝𝑖 are nonnegative, so their sum and thus P(A) ≥ 0.  

Axiom 2. P(Ω) =1. Let’s plug it into the function and see what happens!

𝑃(Ω) = ෍

{𝑖:𝜔𝑖∈Ω}

𝑝𝑖 =෍

𝑖=1

𝑛

𝑝𝑖 = 1
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Proving that the function satisfies Axiom 3 gets a little complicated, so we’ll take it nice and slow.
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Axiom 3. If  sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑘 ∈ ℬ are pairwise disjoint, then P(ڂ𝑖=1
𝑘 𝐴𝑖) = σ𝑖=1

𝑘 𝑃(𝐴𝑖)
We’re swapping infinity for k since ℬ contains finite sets, so we’re only looking at finite unions.

𝑃(ራ

𝑖=1

𝑘

𝐴𝑖 ) = ෍

{𝑖:𝜔𝑖∈ڂ𝑖=1
𝑘 𝐴𝑖}

𝑝𝑖 =෍

𝑖=1

𝑘

෍

{𝑗:𝜔𝑗∈𝐴𝑖}

𝑝𝑗 =෍

𝑖=1

𝑘

𝑃(𝐴𝑖) 𝑃(ራ

𝑖=1

𝑘

𝐴𝑖 ) =෍

𝑖=1

𝑘

𝑃(𝐴𝑖)⇒
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The double summation may still read like Greek to you, and to be fair, there’s definitely some Greek in 

there, so lets break that part down a little more and do it in a slightly different order to get rid of  the double 

summation.
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Axiom 3. If  sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑘 ∈ ℬ are pairwise disjoint, then P(ڂ𝑖=1
𝑘 𝐴𝑖) = σ𝑖=1

𝑘 𝑃(𝐴𝑖)

𝑃(ራ

𝑖=1

𝑘

𝐴𝑖 ) = ෍

{𝑖:𝜔𝑖∈ڂ𝑖=1
𝑘 𝐴𝑖}

𝑝𝑖

= σ{𝑗:𝜔𝑗∈𝐴1}𝑝𝑗 + σ{𝑗:𝜔𝑗∈𝐴2}𝑝𝑗+ σ{𝑗:𝜔𝑗∈𝐴3}𝑝𝑗 +⋯+ σ
𝑗:𝜔𝑗∈𝐴𝑘

𝑝𝑗

= 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 +⋯+ 𝑃 𝐴𝑘

=෍

𝑖=1

𝑘

𝑃 𝐴𝑖
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Axiom 3. If  sets 𝐴1, 𝐴2, 𝐴3, … ∈ ℬ are pairwise disjoint, then P(ڂ𝑖=1
∞ 𝐴𝑖) 

= σ𝑖=1
∞ 𝑃(𝐴𝑖)

Like we said earlier, this axiom is a little more complicated than the others. For some 

statisticians back in the 1970’s, a little more complicated was too much more complicated.  

So they rejected it.  You can totally do that with axioms.

They substituted a different axiom that’s way simpler, called the axiom of  finite additivity:

Alternative Axiom 3. If  sets 𝐴 ∈ ℬ and 𝐵 ∈ ℬ are disjoint,

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵)
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