Probability and Statistics: A Primer for Beginners and Pre-Beginners
 Prologue to the Prologue: Set Theory
 Part One: The Sample Space and Events

In the beginning, there was...

(the sample space)

And in it were...

(of an experiment)

When a coin was flipped...

$$
\Omega=\{\mathrm{H}, \mathrm{~T}\}
$$

When a die was rolled...

There was no limit to what it could contain, even ALL THE NUMBERS!

$$
\Omega=(-\infty, \infty)
$$

(well, in this case, just the real ones, but you get the idea)

It could be countable:

$\Omega=\{1,2,3, \ldots\}$

It could be UNcountable:

$$
\Omega=(0, \infty)=\{0.1, \ldots
$$

And 10 , the elements of Ω were called events.

Like each side of a coin:

H T

Or each face of a die: - C $\because: 8$:

Even the combinations of these elements were events.

Like rolling a one or two.
 $$
\left\{\begin{array}{lll} \bullet \cdot \end{array}\right\}
$$

Or an even number

$$
\{\llbracket: \boxplus \boxplus\}
$$

And then the skies darkened, for there was set notation on the horizon... © 8

A single outcome could be an element of a set
© $\in\{\cdot \boldsymbol{\bullet} \cdot\}$
In fact, that outcome was an element of any set that included it

$\subset \in\{\subset:$ ©

And vet there was more! If every element of one presmation l-1- Tha Sample space and Events element of a second set, the first set was considered a subset of the second!

Meant that...

$$
\{\square: \mathbb{Q}\} \subset\{\boldsymbol{\square}: \mathbb{B}\}
$$

Then as if to taunt us, all the easy-to-read dice pictures became intimidating algebra! The two-face became x, the four-face became y, the six-face became $z \ldots$

The first set became A...

$$
\begin{gathered}
\mathrm{A}=\{x, y\} \\
x \in \mathrm{~A}
\end{gathered}
$$

The second set became B...

$$
\begin{gathered}
\mathrm{B}=\{x, y, z\} \\
x \in \mathrm{~B}
\end{gathered}
$$

$$
y \in \mathrm{~A} \quad y \in \mathrm{~B}
$$

And so...

$A \subset B$

Rut then they hecame friendly dice arain presentation 1-val: The Sample space and Events
But then they became friendly dice again to explain complementation. If B is the set of even faces, then the odd faces are not in it.

$$
\begin{aligned}
& B=\{\because: \mathfrak{:}: \mathbf{:}] \\
& \bullet \bullet \bullet \notin B
\end{aligned}
$$

(is not an element of)
They comprise its complement, B^{C}, the set of all elements of Ω that aren't elements of B .

$$
B^{c}=\{\bullet \because \subset \in\}
$$

