Probability and Statistics: A Primer for Beginners and Pre-Beginners
 The Journey Begins: Probability Theory
 Part Five: Learning to Count (pt.1)

...but I know how to count.

Do you, though? Let's try something, then. See those nine balls below? Say you need to choose four of them for a lottery, and the ticket has to get all four numbers right in the same order they were picked to win.

9

How many different lottery tickets can there be?

Hmm...

- 1-2-3-4
- 1-2-3-5
- 1-2-3-6
- 1-2-3-7
- 1-2-3-8
- 1-2-3-9
- 1-2-4-3
- $1-2-4-5$
- 1-2-4-6
- $1-2-4-7$
- 1-2-4-8
- 1-2-4-9

All right, stop! This'll take forever.

It sure will! And just imagine if I'd used the 44-number lottery from Casella and Berger's example! But we can think about this a little differently.

We're choosing from these nine balls without replacing them, right?

So for our first pick, there are nine possibilities:

Yeah, ok.

Then, no matter what that number was, there are 8 balls left.

So, for each of the 9 possible first choices, there are 8 possible second choices. So there are $9 * 8$ possible permutations for the first two numbers. And after the second pick, there are 7 balls left:
...so, $9 * 8 * 7$ possible permutations for the first three choices?
Now you're getting it! And that leaves 6 possible final choices.

So how many possible lottery tickets? $9 * 8 * 7 * 6=3,024$
Choosing that lottery ticket consisted of four tasks (each number to pick). The first task could be done 9 ways, the second could be done 8 ways, the third could be done 7 ways, and the fourth could be done 6 ways...

I sense a theorem coming on...

How perceptive of you!
If a job consists of k tasks, and the i th task can be done n_{i} ways, then the total number of ways to complete the task is

$$
n_{1} * n_{2} * n_{3} * \cdots * n_{k}
$$

Neat. So we're done, then?

No! ©

Say that first lottery was hemorrhaging money, so the organizers changed the rules: Now, after being picked, the ball gets put back and could be picked again! We still have nine choices for the first number:

But then, things change...

Right, we've still got nine choices for the second number.

Exactly:

Same goes for the third number:

And the fourth:

Can we still use the theorem?

We sure can!

Our "job" still consists of 4 tasks, but now each of those tasks can be done in nine ways, giving us

$$
n_{1} * n_{2} * n_{3} * n_{4}=9 * 9 * 9 * 9=9^{4}=6,561 \text { possible tickets }
$$

